

5 rules to ensure sustainable data management platform deployment

Building a Robust Data Foundation

- A leading provider of data management and analytics solutions for the utilities sector
- A quality group of engineers, software & algorithm experts with **vast** water experience
- More than 100 installations, world-wide
- Operating since 2007

Proudly serving some of the largest water treatment, wastewater treatment and desalination facilities in the world while helping to protect surface water quality and security

iGreen

IOSight's Smart Water Suite

IOSight Proprietary Data

iGreen - System Architecture

Why do projects fail?

- > An incidental approach to data science
- > A **bottom-up** attitude

Data normalization fundamentals

Doing it right

- Data should be reliable
- The system should be accessible and easy to use
- Long-term performance should be taken under consideration from the inception of the project
- Team and management An ongoing maintenance of the system requires a trained team, data integrity 'watch dogs' and mainly – continuous involvement from the user

- Coherency The BI system (e.g. reporting/ dashboarding, analytics) should be integrated in the DB and must reflect the data model
- Future analytics must go through the validated data base

- > Invest in the design stage:
 - Prepare a thorough base of design spec
 - Define a product tree that will be intuitive
 for the users
 - Agree with the customer on the basic reasons/ triggers that initiated the project and secure a continuous use
 - Agree with the customer on the initial outputs

Level 1	Level 2	Level 3	Level 4	Level 5	Tag Name	Engeeniring Units
HBAF	Feed	Raw Water Tank Level				m
		Pumps	Feed Pump A Status			
			Feed Pump A Current			A
			Feed Pump B Status			
			Feed Pun	np C Status		
			Feed Pun	np D Status	i	
			Feed Pun	np E Status		
		Blowers	Blower A	Status		
			Blower A	Current		A
			Blower B	Status		
			Blower B Current			A
			Blower C	Status		
			Blower C	Current		A
	Group A	Group A Feed Flow				m3/ <u>hr</u>
		HBAF 1 Level				m
		HBAF 2 Level				m
		Group <u>A</u> Outlet DO				mg/l
	Group B	Group B Feed Flow				m3/ <u>hr</u>
		HBAF 3 Level				m
		HBAF 4 Level				m
		Group B Outlet DO				mg/l
MF	Feed	MF Feed Tank Level				m
		MF Feed Turbidity				NTU
		MF Feed Pressure				MPa
		Pumps	Pump A S	Status		

Engineering-led modeling

- Prepare a product tree that reflects the engineering aspects on the system (rather then the automation aspects)
- Collect only the necessary tags
- Virtualize missing tags or unreliable processes (like Pump in rest status while flow parameter showing results
- Standardize unit and tag properties (no of digits, categories, formulas etc.)
- Minimize sampling rate

- > Use a proper cleansing methodology
 - Pre-processing based on a predefined rule base
 - Avoid values that are in mis-match with the process (e.g. concentration of less the 0 ,etc.)
 - Reject data collection of repeating values with no significant change (dead band, change)
 - Create calculated tags that are based on a validated tested algorithm
 - Compare aggregated data and multiple sources of data that refers to the same entity (e.g., manual meters VS AMI), and document the logical 'right'

value

Outputs normalization

- Try to be consistent with formulas online VS reporting and dashboarding rule base
- Build frequently used calculated tags to be used on multiple outputs
- Be coherent when building balances and complicated formulas and reports
- Do not create dependency on data that has to be extracted repeatedly with growing volumes – it will eventually miss the original performance objectives
- Do not launch complex analytics-oriented projects before ensuring the data is 100% reliable and normalized!

Choose the right platform and implementation team

- > It should be **all in one** collect- cleanse- store- present and analyze
- It must be easy to use and configurable so that the direct user will be able to take control on a certain point of time and take it forward independently
- The implementors must be engineers that can understand the need to the extent of possessing basic know how of what's best for the client
- > Data replication does not go together with normalized data!
- > Make sure the system **alerts** on missing datasets, anomaly results and duplications

Remember: Preparing the actual report or dashboard should be a straightforward procedure – if you invest more than that – there is either something wrong on the deployment methodology or in choosing the platform

Thank You

